
Ancient TL Vol. 28 No.1 2010                                                                                                                                                                              1 

On plotting OSL equivalent doses 
 

R. Galbraith 

 

Department of Statistical Science, University College London, Gower Street, 

London, WC1E 6BT, UK (email rex@stats.ucl.ac.uk) 

 
(Received 27 November 2009; in final form 18 December 2009) 

_____________________________________________________________________________________________ 

Abstract 

This article is motivated by some recent discussion of 

the use of so-called ―probability density‖ plots of 

OSL equivalent doses. Such graphs are not advocated 

in the statistics literature. I try to explain what they 

are doing, why they are easy to mis-interpret and why 

they are not to be recommended. I include discussion 

of the meaning of dose frequency distributions, 

statistical research on the problem of estimating a 

frequency distribution when observations from it 

have added errors, and the possible role of dose 

histograms, in addition to radial plots, as data 

displays. 

   

Introduction 

There has been some recent discussion of the use of 

so-called ―probability density‖ (PD) plots for 

displaying single grain, or single aliquot, OSL 

equivalent doses, and it was suggested to me that I 

might contribute to this. PD plots are used quite 

widely, as can be seen by perusing articles to be 

published in Quaternary Geochronology arising from 

the 12th International Luminescence and Electron 

Spin Resonance dating conference. Some years ago 

they were used by the fission track community to 

display single grain fission track ages. I criticised 

them then on several grounds: they do not estimate 

the true age distribution, modes in a PD plot do not 

necessarily correspond to discrete component ages, 

they obscure good information by combining it with 

bad, and their reliability was untested (Galbraith, 

1998). They have been largely abandoned by the 

fission track community — I suspect mainly because 

they have not been found useful in practice.   

 

In principle those criticisms also apply to OSL 

equivalent doses, though the popularity of PD plots 

here suggests that some people do consider them to 

be useful. However, they do not appear to have been 

advocated in the statistics literature. In this article I 

will try to explain what I think PD plots are doing, 

why they are difficult to interpret, and what 

alternatives there might be.  Some of these ideas are 

also in a book chapter (Roberts and Galbraith, in 

press) which is to appear, though it was originally 

written in 2006. 

What are the data? 

We have a set of bivariate observations — an 

equivalent dose and its standard error for each of n 

quartz grains or aliquots, where n might be as low as 

20 or 30 or as high as several hundred. A general 

feature of such data is that both the observed doses 

and their standard errors vary. Usually they vary 

together, with a higher standard error associated with 

a higher dose, the main exception to this being when 

the observed doses are close to zero. 

   

A natural candidate for a graph is therefore some sort 

of bivariate plot; and a particularly useful one is a 

radial plot, which most readers will be familiar with. 

Descriptions of this method can be found in Galbraith 

et al. (1999), Galbraith (2005), Roberts and Galbraith 

(in press) and in other references cited there, so I will 

not deal with them further here. It is worth 

emphasising, though, that radial plots have optimal 

statistical properties (Galbraith, 1988) — they display 

the data as informatively as is possible and without 

distortion. They have also been found to be powerful 

in practice and can reveal features not otherwise 

apparent.  Regardless of what other plots are also 

made, I would recommend researchers to look 

carefully at a radial plot of their equivalent doses. 

   

A radial plot, though, does not provide an explicit 

picture of the frequency distribution of equivalent 

doses, which is perhaps why researchers may want to 

see some sort of frequency curve. However, we need 

to think carefully about what the frequency 

distribution of doses is and whether it has a useful 

scientific meaning.  Sometimes it does not, and it is a 

strength of the radial plot that it does not force this 

interpretation on the reader. 

 

Dose frequency distributions 

The information in a relative frequency distribution 

of observed equivalent doses is complicated. It 

contains mixtures of received doses, natural variation 

and estimation errors — some of which are 

multiplicative and some additive — and does not 

simply relate to the relative numbers of grains in 

some real population that have received each possible 

dose. It is much more complicated than, for example, 
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a frequency distribution of heights of men or weights 

of babies. 

 

Consider a hypothetical situation where we have a 

sample of single grain equivalent doses from a field 

sample of quartz that have been measured essentially 

without error (i.e., with negligible standard errors).  

The doses received in nature may differ between 

grains for various reasons, such as differing burial 

history or partial bleaching.  Furthermore, even if 

each grain had experienced the same radiation dose 

in nature, the measured doses (even though measured 

exactly) would vary because of natural variation in 

luminescence properties between grains. Different 

scenarios will typically produce different dose 

distributions — for example unimodal distributions 

with low dispersion (perhaps representing only 

natural variation in luminescence), mixtures of two or 

three such component distributions, or highly 

heterogeneous, asymmetric or multimodal 

distributions. 

  

What would knowing the shape of the frequency 

distribution of the doses tell us?   

If we are lucky, it might indicate the type of sample 

or scenario we have.  But before going further, there 

is another question: does this frequency distribution 

represent a natural phenomenon or is it largely a 

result of the process of grain selection and 

measurement?  In the latter case it may be of more 

limited interest, and possible inferences from the data 

may also be more limited. 

   

For example, suppose that each grain in our sample 

had essentially experienced one of two alternative 

burial histories, so each had received one of two 

radiation doses (e.g., by mixing of grains from two 

juxtaposed sedimentary strata that differ significantly 

in age). We could fit a two component mixture to 

estimate those doses. But would the estimated mixing 

proportions reflect anything other than artifacts of the 

experimental procedure, particularly grain selection? 

After all, only a small fraction of grains in a sample 

actually produce a measurable luminescence signal 

and these could be a highly non-random subset. 

Nevertheless, the component doses themselves 

should still be meaningful.  The same applies to 

mixtures of more than two components — what do 

the mixing proportions represent?  And by extension, 

what do the relative frequencies of different doses 

represent?  In particular, does the most frequent dose 

in a sample have any special scientific relevance or 

meaning? These are questions for practitioners. The 

answer to the last one may sometimes be yes and 

sometimes no. 

   

For aliquots comprising several grains, the concept of 

a dose frequency distribution is more complicated. It 

makes some sense if all grains in the same aliquot 

have experienced the same burial history. Then any 

differences in ―true‖ single grain doses within an 

aliquot (had they been observed) would presumably 

just be due to differences in luminescence properties, 

and the aliquot equivalent dose would be 

representative of the burial history.  But if grains in 

the same aliquot had different burial doses, or had 

experienced different amounts of partial bleaching, 

then the aliquot dose distribution would be much 

harder to interpret. 

     

Incidentally, I have seen researchers fit finite 

mixtures (say with two or three component doses) 

and then choose the dose with the largest mixing 

proportion to be the relevant one.  This seems like 

bad logic, especially for samples composed of 

partially bleached sediments.  The relevant dose 

might be that corresponding to the youngest grains, 

and these could easily be a minority of the sample. 

This type of reasoning arises when looking at humps 

and bumps in frequency distributions too. 

   

Histograms and kernel density estimates 

Continuing with the case where our equivalent doses 

are measured without error, suppose that we do want 

a picture of the shape of the dose distribution. This 

could be provided (if there were enough grains) by a 

well-drawn histogram, which is essentially a graph of 

relative numbers of grains falling into different dose 

intervals (bins). Histograms are of course very 

familiar and widely used.  A possible alternative is a 

kernel density estimate (KDE).  This is a continuous 

curve that is an estimate of the probability density 

function (assumed to be continuous) of the 

distribution that the observations are supposedly a 

random sample from.  

 

Denote the sample of true doses by x1,x2,…,xn and 

imagine that they were drawn randomly from a 

distribution with probability density function f(x).  

Now think of a histogram of these with equal bin 

widths.  For a large enough sample, and small enough 

bin widths, this will give an idea of the shape of f(x).  

The area of each rectangle, and in this case also its 

height, is proportional to the number of observations 

falling in that bin, and (suitably scaled) is an estimate 

of the relative numbers in that interval in the 

population. 

  

Now imagine drawing a histogram by starting with a 

bin at the extreme left (with no data in it) and sliding 

that bin continuously along the x scale. At each value 

of x draw a point at height equal to the number of 

data values in the bin centered at x. The points will 
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trace out a curve that goes through the top middle 

points of the histogram rectangles plus more in 

between. That curve is a kernel density estimate of 

f(x) — in this case, using a rectangular ―window‖.  If 

you increase the bin width the curve will be smoother 

but may lose shape features, and if you decrease the 

bin width the curve will resolve more shape features 

but be more erratic.  Choice of bin width is a 

compromise between these two. 

  

Rather than using a rectangular window, many kernel 

density estimates use a Gaussian window, which does 

not have discontinuities at the ends.  The curve you 

then get is equivalent to drawing a Gaussian 

probability density function centered at each data 

value (each with the same standard deviation b which 

is chosen by you) and then summing them point-

wise.  This is simply a data smoothing method — as 

is counting up numbers in a histogram bin — there is 

no probability interpretation of this Gaussian 

window. 

 

The quantity b is called the bandwidth of the 

window, and is analogous to the bin width of the 

histogram: the larger b is, the smoother the curve but 

the less resolution in shape there is. Actually there 

are many types of window around — nowadays they 

are called kernel functions — including triangular 

and cosine, but the principle is the same. 

  

Statisticians have found that the shape of the window 

does not make much difference to the shape of the 

density estimate. What really matters is the 

bandwidth, which is a compromise between how 

much smoothing and how much resolution in shape 

you want.  Choice of bandwidth usually depends on 

the sample size, with smaller bandwidths used for 

larger samples. This is like choosing the bin sizes for 

a histogram. Note that any smoothing distorts the 

data and loses information. A kernel density estimate 

is always a biased estimate of f(x) and in statistical 

terms the choice of bandwidth is a compromise 

between reducing bias and reducing variance.  There 

is some theory about how to choose a bandwidth in 

order, for example, to minimise mean squared error 

(which is variance plus squared bias). In general large 

samples are needed to get reasonably informative 

kernel density estimates. 

  

As estimates of density functions, KDEs enjoy some 

theoretical advantages over histograms (Wand and 

Jones, 1995, p5). The main disadvantage of 

histograms in this regard is that their shape can 

depend on where the first bin starts as well as on the 

bin width. Being continuous, KDEs give an 

impression of high precision, even for small sample 

sizes — but often a spurious impression.  They have 

been developed by statisticians for over 50 years and 

are a useful exploratory tool, but they are not often 

used to present scientific data.  One reason, I think, is 

that a histogram is better for this purpose. A 

histogram explicitly displays proportions of 

observations in various intervals as areas, whereas a 

KDE displays relative frequencies as a continuous 

curve. A KDE does not so easily lend itself to visual 

comparisons or simple calculation; it emphasises 

humps and bumps in the frequency curve, many of 

which have no significance; and it hides information, 

particularly relating to sample size and variability. As 

a general-purpose graph, a histogram is nearer to the 

raw data, easier to use and more convincing. 

 

PD plots 

Now let us return to the situation where the standard 

errors are non-negligible and variable. Denote the 

observed doses and their standard errors for n grains 

by (yi, si) for i =1,2,...,n. 

   

A PD plot is constructed by replacing each yi with a 

Gaussian probability density function centered at yi 

and having standard deviation si, and then adding 

these point-wise to obtain a continuous curve. Its 

construction is similar to that of a KDE, but with a 

different kernel function (with a different bandwidth) 

for each observation. The plot has some intuitive 

sense: you can think of it as plotting for each 

candidate dose, the ―popularity‖ of that dose, as 

voted for by the n grains in the sample, where each 

grain spreads its vote (unequally) over several 

neighbouring doses, with more uncertain grains 

voting for a wider range of doses. Note that 

popularity comes both from frequency (yis close 

together) and precision (small si). Does a particular 

dose have any special scientific meaning simply 

because it is measured with high precision? Surely 

not. 

   

The name ―probability density plot‖ suggests that it is 

a plot of a probability density. An immediate 

question is: what probability density? The answer is: 

that of an equal mixture of n Gaussian distributions, 

where the ith component has mean yi and standard 

deviation si. In other words, a PD plot is plotting the 

probability density function of a random variable z 

constructed as follows: choose one of the n yis at 

random and add to it a Gaussian random error with 

standard deviation si. 

   

A second question is whether the random variable z 

(and its associated distribution) is of any interest.  To 

understand this, it is useful to think of a simple 

statistical model.  Suppose that for each given si, the 

observed dose yi is generated by the equation 

  



4                                                                                                                                                                        Ancient TL Vol. 28 No.1 2010 

yi = xi + ei                                          (1) 

    

where xi is randomly drawn from a distribution with 

probability density function f(x) and ei is randomly 

drawn from a Gaussian distribution with mean 0 and 

standard deviation si. Intuitively, xi represents the 

―true‖ dose (i.e., measured without error) for grain i 

and ei is the error in estimating xi (i.e., the difference 

between yi and xi).  Neither xi nor ei is observed. The 

function f(x) is unknown and our aim is to estimate it, 

or at least some of its features.  

   

This type of model is familiar. If we postulated a 

parametric form for f(x), such as Gaussian, we would 

have a version of the central age model. But here we 

are trying to let the data tell us something about f(x) 

without assuming a specific form. In the previous 

section we were essentially thinking about how to do 

this if we could directly observe the xis. 

  

Under this model, we can now think of obtaining a 

value of z by first choosing one of the n xis at 

random, adding a random  ei to it to get yi, and then 

adding another Gaussian random error to yi to get z. 

So the distribution of z (i.e., the PD plot) does depend 

on the n xis, which have been sampled from f(x).  But 

it also depends on the n sis — doubly so because two 

independent random errors, each with standard 

deviation si, have been added to xi.  Its usefulness in 

practice will depend on whether it provides 

recognisable and useful information about f(x). 

   

There is a conspicuous lack of published theory about 

this. I've never seen a proper statistical study of PD 

plots, or even a reference to such a study — indeed I 

have never seen them advocated in a statistics 

journal. But there is some published research in 

statistics journals on how to estimate f(x). One result 

of this is that the data (yi, si) in general contain very 

little information about the shape of f(x). This is a 

warning against giving much credence to locations 

and relative heights of peaks in any estimate of f(x). I 

summarise this research below. 

   

My own experience from looking at PD plots, both 

with real and with simulated data, is that they are not 

uninformative but nor are they very informative, and 

their shape can be greatly affected by the sis. If we 

observed the same doses, but with different 

precisions, the curve can look very different. Often si 

tends to increase with yi. This alone will tend to 

produce a highly positively skewed curve with the 

highest peak or peaks near the left hand (lower dose) 

end. That is, one can often guess its general shape 

even without seeing any data. In general a high peak 

will be partly a result of several yis being close 

together but partly also a result of sis being relatively 

small. Conversely, if there are a substantial number 

of low-precision (large si) grains in the sample, as 

there often are, these will tend to smooth out the 

whole curve and dilute the information from the high 

precision grains. Examples of these effects in the 

context of fission track ages can be seen in Galbraith 

(1998). 

   

The force of these effects will of course be less if all 

or nearly all of the sis are small compared with 

differences between yis. In that case the distribution 

of yis will not differ greatly from that of the xis and a 

PD plot may be similar to a kernel density estimate 

(based on the xis) having the same average 

bandwidth. 

   

In the above model si is unrelated to xi. But usually in 

practice the standard error tends to increase with 

dose. Sometimes the relative standard error is 

approximately independent of the dose. Then 

equation (1) would apply better with (yi,si) equal to 

the estimate and standard error of the natural log of 

the dose.  But a PD plot of log doses would look very 

different in shape, and may have different numbers, 

locations and relative heights of peaks, compared to 

using a linear dose scale. Which scale should be used 

and why? 

 

Some pitfalls 

I don't think I have ever seen a paper where the 

author presents a PD plot and then comments that its 

shape may be reflecting the differing estimation 

errors rather than how the equivalent doses vary.  

Nearly always it is interpreted, implicitly or 

explicitly, in terms of which doses are predominant 

or indicated. This is understandable, because the 

graph invites one to do this, but it is misleading.  

Here are examples of possible pitfalls. 

 

• You draw a PD curve and find that it has a high 

peak near the left hand end at a dose that plausibly 

corresponds to the burial dose of that sample 

(perhaps inferred from other information). So you 

present the PD plot as if it were pointing to that as the 

burial dose, or as support for that value. There may 

well be some relation between where the highest 

peak occurs and the burial dose — it may even agree 

closely sometimes — but it is not a reliable one.  

Often the PD curve is likely to have its highest peak 

near the left end simply because of the scale on 

which it is drawn and the nature of the error 

distributions.  Sometimes also the burial dose may be 

reflected in only a minority of grains, and may not 

appear as a peak at all. 

 

• In the previous scenario you might argue that in this 

case the PD graph gives the ―right‖ answer, so it is 
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useful here. How do you know it is the right answer? 

Presumably from some other information. Then what 

use is the PD plot? It's not good enough that the 

location of a peak in a PD plot might sometimes 

agree with the burial dose. As Lewis Carroll 

famously wrote, a stopped clock is right twice every 

day. A better approach would be to say ―The PD 

graph suggests such and such. How can I investigate 

that hypothesis more seriously?‖ 

 

• You look at the grains sitting under a peak of the 

PD curve and use these to estimate the burial dose, or 

some dose of interest. Or likewise, you use grains 

under different peaks to estimate different mixture 

components and their standard errors. This is like a 

so-called ―classification‖ method of estimating 

mixture components. Such methods are known to be 

biased — sometimes very biased — and to provide 

unreliable standard errors.  Fortunately there are 

more reliable methods available, such as maximum 

likelihood estimation. 

     

• Among lots of information and data in a paper are 

several PD plots, and a commentary that refers to 

these to support the discussion of some phenomenon 

or theory of interest.  The proposed theory may well 

be right, but logic tells us that if a PD plot does not 

reliably estimate the true dose distribution (which it 

does not) then those graphs do not support the theory. 

   

An important aspect of this is that even if the writer is 

able to avoid such pitfalls, it may still be hard for 

readers to do so. 

 

How can we get a picture of f(x)? 

Suppose we have the scenario given by equation (1) 

and we want to estimate the function f(x). A PD plot 

will not do this, so how can we do it? There are two 

general statistical approaches: parametric and non-

parametric. The central age and minimum age models 

are examples of parametric methods. These assume a 

specific form for f(x), but with unknown parameters 

that represent quantities of interest which are then 

estimated from the data. The idea of using a non-

parametric method is to see if the data can tell us 

what shape f(x) has without imposing a particular 

form. 

   

There has been some research on this. An important 

general result is that the data (yi,si) contain a very 

limited amount of information about the shape of 

f(x), as opposed to its location and dispersion (e.g., 

Goutis, 1996; Madger and Zeger, 1996; Wand and 

Jones, 1995, p160).  The same data can easily arise 

from quite different f(x)s.  

  

Several methods have been suggested. One is the 

―non-parametric maximum likelihood estimate‖ 

(NPMLE). This turns out to yield a discrete 

probability distribution concentrated on a relatively 

small number of values — that is, it estimates f(x) as 

a set of k different values and their probabilities, 

where k is quite small compared with n (Laird 1978).  

When f(x) is assumed to be continuous it is arguable 

that it would be nice if the estimate of f(x) were also 

continuous. To this end Madger and Zeger (1996) 

proposed a smoothed version of the NPMLE (called 

SNPMLE). This assumes that f(x) is a mixture of k 

Gaussian distributions (where k is unknown) each 

having a standard deviation greater than or equal to 

some known value b. The thinking behind this is that 

you can produce a wide variety of different shapes by 

mixing enough Gaussian distributions in differing 

proportions. The condition on the standard deviations 

is necessary in order to guarantee convergence to a 

solution. You could call it a semi-parametric method.  

The SNPMLE converges to a mixture (with differing 

mixing proportions) where, again, k is relatively 

small and all components of this mixture have the 

same standard deviation, equal to b. The value of b is 

chosen empirically to achieve a desired amount of 

smoothing, like a bandwidth of a kernel density 

estimate — the larger b is, the smoother the graph.  

Other methods have been proposed by Goutis (1996) 

and Newton (2002). These methods are all 

computationally intensive to implement.  More recent 

work includes Delaigle and Meister (2008), 

Staudenmeyer et al. (2008) and Wang et al. 

(submitted) so theoretical progress is being made in 

this area. 

 

The general message seems to be: it is hard to infer 

the shape of an underlying distribution when 

observations from it have added errors, even when 

these errors have known standard deviations.  A more 

fruitful approach might be to ask: what specific 

features of f(x) do we really want to know? Then try 

to ascertain these by appropriate statistical modelling. 

 

Improving a histogram 

To help interpret a histogram of single grain 

equivalent doses, Roberts and Galbraith (in press) 

suggest adding a scatter plot of si against yi. This is 

illustrated in Figure 1 for a sample of 82 single quartz 

grains. Olley et al. (2004) reported that these grains 

were transported by wind on to the bed of Lake St. 

Mary (in semi-arid south-eastern Australia) within 

the last 40 years. Many of the observed equivalent 

doses are close to zero and some are negative. 
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Figure 1: Histogram and scatter plot of equivalent 

doses for 82 grains of aeolian quartz (sample SM15 

from Olley et al., (2004). 

 

The histogram has a positively skewed shape for 

doses below 1 Gy and three more extreme values 

around 2 and 3 Gy. The scatter plot shows that 

several grains have standard errors greater than 0.5 

Gy, which is quite large compared with differences 

between the dose estimates, and two of the extreme 

values have standard errors greater than 1 Gy, so 

could, in principle be consistent with the values for 

some of the lower dose grains. It must be emphasised 

that this graph is simply a plot of the raw data; the 

histogram in particular is a summary of the yis and 

should not be interpreted as a graph of the xis. The 

scatter plot helps with this by drawing attention to the 

si associated with each yi. In fact the histogram is 

better viewed as an adjunct to the (yi, si) scatter plot, 

showing the marginal distribution of yi, rather than 

the other way round. 

   

This example is presented here simply to illustrate 

the method. It is unusual in having several negative 

and near-zero equivalent doses; but their presence 

serves to remind us that the yis are not the xis (the true 

doses) but just estimates of them. For example, the 

smallest yi is –0.35 Gy. Because xi cannot be 

negative, we can deduce that this yi underestimates its 

xi by at least 0.35 Gy. The si for this grain is 0.45 Gy, 

indicating that its xi could still be as large or larger 

than –0.35 + 2  0.45 = 0.55 Gy. In general, a 

histogram of yis need not look like a histogram of the 

corresponding xis. 

   

Graphs like Figure 1 were used, in conjunction with 

radial plots, by Arnold et al. (2009) to compare a 

number of samples of differing origin. We found the  

 
 

Figure 2. Radial plot of the data in Figure 1. The two 

grains with very imprecise equivalent doses near 2 

Gy are plotted as filled circles (the points almost 

coincide). 

 

scatter plot useful for revealing the relationship 

between si and yi. Sometimes there was a strong 

positive correlation, indicative of multiplicative 

errors, and other times there was little or no 

correlation (especially for small yi, such as in Figure 

1 here) suggesting that the main sources of error were 

additive. My co-authors also found the histograms 

useful for indicating some general characteristics of 

the sample. 

 

Figure 2 shows a radial plot of the same data. This 

uses a linear dose scale rather than the usual log 

scale, the latter not being possible with negative 

estimates. It is not easy to draw this scale in such a 

way as to accommodate the three extreme values and 

at the same time to show the rest of the data in detail.  

Here I have drawn it so as to see the main data 

clearly; and radii through the three values greater 2 

Gy go off the De scale. The two values near 2 Gy are 

seen here to be almost completely uninformative — 

you hardly notice them — and the vast majority of 

points (all but about 10) are consistent with having 

zero dose. 

 

In this example the information in the radial plot is so 

clear that very little further analysis is necessary. 

Possible further analysis might be to try to ascertain 

whether the burial dose is actually zero or some 

positive value close to zero and perhaps calculate an 

upper confidence limit for it.  This would require 

proper statistical modelling. In fact Olley et al. 

(2004) estimated a burial dose of 0.1 Gy with a 

confidence interval that included 0 Gy. 
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Figure 3. An alternative radial plot of the data in 

Figure 1 using the modified log transformation  d = 

log(De + 1). The two De values near 2 Gy are again 

plotted as filled circles. 

 

For data containing zero or negative estimates, an 

alternative to using a linear dose scale is to use a 

modified log transformation given by d = log(De + a)  

for some suitable a. That is, add a Gy to each 

observed dose and then take logs.  The standard error 

of d is then approximately se(De)/(De + a).  Figure 3 

illustrates this method for a = 1. The dose scale is 

now non-linear, calculated from the formula De = e
d
 – 

a, and there is no difficulty in including the extreme 

values on it. 

 

The message from Figure 3 is very similar to that 

from Figure 2. It looks a bit different because the 

estimates are plotted with respect to relative, rather 

than absolute, standard errors; in particular, the three 

extreme values are more prominent. This method is 

useful when the data contain some near zero doses 

and some larger ones. 

  

Choice of bin width 

A reviewer raised the question of what bin width to 

use for the histogram, particularly in relation to 

consistency of presentation and also whether the 

standard errors should be used to determine it. 

   

In Figure 1 I have used bins of width 0.2 Gy, located 

so that 0 Gy comes in the middle of a bin (and 

consequently, so do 1, 2 and 3 Gy). A reasonable 

alternative would be to have 0 Gy at the edge of a 

bin. General guidelines tell us to use smaller bins for 

larger sample sizes and to try to achieve a reasonable 

amount of smoothing without losing too much detail, 

but there is no hard and fast rule. It is helpful to use 

friendly values; 0.2 Gy is better than 0.23 Gy, say. If 

I had used 0.1 Gy there would be twice the number of 

bins with smaller numbers in each, while 0.4 Gy 

would produce half the number of bins and more data 

pooled. Here 0.2 Gy seems about right. My personal 

preference is to err on the side of more bins rather 

than fewer, so as to reveal more of the raw data. 

     

A histogram does not have to have equal width bins 

of course. For very highly skewed data it is 

sometimes suggested to have wider bins in the tail 

(drawn so that the area of a rectangle, not its height, 

is proportional to the number of observations in the 

bin). But equal bin widths are easier to understand 

and are nearly always used for routine presentation. 

In Figure 1 it is much better to show the three large 

values in separate bins rather than combining them 

into one long bin. Incidentally, if you look at these 

actual doses in the scatter plot you can see that they 

do not fall in the middle of each bin; the histogram 

just tells you that the points are somewhere in the bin, 

not necessarily in the middle. 

   

What about consistency of presentation? In fission 

track analysis it is standard practice to measure about 

100 track lengths and present them in a histogram 

with 1 micron bins on a scale that goes from 0 to 20 

microns. This is possible because unannealed track 

lengths have a very tight distribution with mean 

about 16 microns and standard deviation about 1 

micron. You never see a track longer than 20 

microns. When tracks are heated they shorten and 

become more variable in length: the distribution 

shifts towards zero and becomes more dispersed and 

skewed. It tells us something about the thermal 

history that the grain has experienced. This 

consistency of presentation is a huge advantage and 

greatly outweighs other criteria for choosing bin 

widths. Many such histograms are shown in articles 

and at conferences and it is possible to compare 

them, not only within the same presentation, but also 

between different articles and talks, even in different 

journals and conferences. 

  

Is such a thing possible for equivalent dose 

distributions? I don't think so. Samples may have 

doses ranging between, say, 10 and 80 Gy. Using 0.2 

Gy bins there would do no smoothing at all.  Using 

bins of width 4 or 5 Gy might be reasonable there but 

would be useless for the data in Figure 1. But there is 

some scope for consistency of style, including axis 

labels and terminology. This is a matter for general 

discussion. Sometimes it may be useful to plot 

equivalent doses on a log scale, which raises further 

questions about style. OSL equivalent doses are far 

more complicated than fission track lengths! They are 

more like fission track ages, but more complicated 
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than them too. Fission track ages are routinely 

presented in radial plots but not in histograms. 

   

Should the sis be used to determine the bin width? 

No. The histogram is a graphical display of the 

observed doses (the yis). The standard error si tells us 

something about how close yi is likely to be to its xi, 

but this has nothing to do with choosing the bin width 

for a histogram of yis. If we had a larger sample size 

we would want smaller bins (regardless of the sis) to 

get a better summary of the data.  

 

This point serves to emphasise that a histogram of yis 

is not the same as a histogram of the xis and should 

not be seen as such. If the sis are all small compared 

with differences between xis then the two will be 

similar. If the sis are non-negligible, then all of the 

previous discussion and theory is telling us that we 

just don't have much information about the frequency 

distribution of xis. We have some information about 

its location and dispersion; which is what the central 

age model is extracting, and we can try to extract 

other information using parametric models such as 

the minimum age models.  There are non-parametric 

methods for estimating this frequency distribution but 

they do not yield either PD plots or histograms of yis. 

 

Summary 

When OSL equivalent doses are observed with non-

negligible and differing standard errors they are not 

easy to compare. A radial plot will display them 

informatively and without distorting their message. I 

recommend looking at a radial plot in addition to any 

other graphs that might be made. 

 

Research has shown that such data contain little 

information about the form of the underlying 

frequency distribution of true doses; quite different 

underlying distributions can easily give rise to the 

same observed data. Several methods have been 

suggested for trying to estimate such an underlying 

distribution, though little is known about how useful 

they are in practice. A question to consider is what 

use this frequency distribution would be if it were 

known. If only some of its features or parameters 

were of interest then a more fruitful approach might 

be to try to estimate these directly.  

   

A histogram of observed doses will reflect features of 

the single grain error distributions and the 

relationship between observed doses and their 

standard errors, as well as variation in true doses. In 

order to interpret it without pitfall it is necessary to 

add further information, such as an adjacent scatter 

plot of standard errors against doses. Together these 

can provide a useful description of the data, but will 

typically not provide a true picture of the underlying 

dose distribution. 

  

PD plots also depend on the error distributions and 

their relationship with dose — more so than 

histograms because effectively two independent 

errors are added to each true dose.  There appears to 

be no rationale or justification for them in the 

statistics literature. They too do not provide an 

estimate of the underlying dose distribution.  All you 

can really do with them is look and see where peaks 

occur. These may or may not reflect features of the 

true dose distribution, which in turn may or may not 

reflect events in nature. 

   

Perhaps their biggest difficulty, though, is that it is 

hard to avoid the types of pitfalls mentioned above. 

The reader is faced with a continuous curve that 

looks meaningful; but it does not mean what it 

appears to mean and there is no reliable way to 

extract what we want from it. Someone once said that 

Wagner's music is better than it sounds. Indeed it 

may be. But PD plots are not as good as they look. I 

don't recommend them. 
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