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Abstract 

I note a fundamental error in the ―alternate form of 

probability-distribution plot‖ proposed by Berger 

(2010a) and comment on some related issues, 

including transformations, radial plots, empirical 

distributions, kernel density estimates, weighted 

means and selected data. 
 

Introduction 

In a recent article in this journal (Galbraith 2010) I 

discussed, among other things, a type of ―probability 

density‖ graph that has sometimes been used to 

display OSL equivalent doses for a sample of single 

grains or aliquots. In this graph, each De value is 

replaced by a Gaussian curve centered on the 

observed De with standard deviation equal to the 

standard error of De and the curves are then summed 

pointwise. I referred to this specifically as a ―PD‖ 
graph and distinguished it from a conventional kernel 

density estimate (KDE). I tried to explain what it is 

doing and why it is not to be recommended. 

    

Also, and perhaps more importantly, I tried to 

encourage researchers to think about the meaning of 

an equivalent dose frequency distribution. To what 

extent does it represent frequencies in a natural 

population, rather than artefacts of sampling and 

grain selection or variation in luminescence and 

experimental procedures? I also distinguished 

between the distributions of true equivalent doses 
(where hypothetically, De values are measured 

without error) and observed De values, a distinction 

necessary for understanding data and making reliable 

inferences. 

    

In the same issue of this journal, Berger (2010a) 

proposed an ―alternate form of probability-

distribution plot‖ for OSL equivalent doses, which he 

called a ―Transformed-PD‖ plot, or TPD plot for 

short. The essence of this was to construct the sum of 

Gaussian curves using log De values and relative 

standard errors, rather than actual De values and their 
absolute standard errors. But the probability density 

curves so obtained were presented on a linear De 

scale, having apparently been transformed (without 

comment) from the log De scale. Unfortunately this 

transformation was not done correctly and they do 

not represent the intended probability distributions — 

and they do not have the meaning attributed to them 

in that paper, as acknowledged by Berger (2010b). 

    

Berger (2010a) also presented some interesting data 

examples and raised several other issues that are 
perhaps worth further comment — concerning radial 

plots, log transformations, empirical distributions, 

kernel density estimates, weighted means and 

selected data. He rightly noted that radial plots offer 

advantages over PD plots. In fact his radial plots are 

far more informative than his corresponding PD and 

empirical distribution plots, and his data presentation 

would be less convincing without them. This is not to 

say that one should make only radial plots of De 

values, but it supports my recommendation to look at 

them in addition to other plots that might be made.  

Berger (2010a) also stated that radial plots could not 
be used for samples containing zero or negative De 

values, because they use a logarithmic 

transformation. But of course one can make a radial 

plot without using a log transformation (or indeed 

any transformation), as acknowledged by Berger 

(2010b). 

   

However, what Berger (2010a, page 13) saw as the 

―two main criticisms‖ of the conventional PD plot are 

merely to do with the nature of the empirical 

distributions of De values and their errors, and he did 
not recognise the more fundamental problems noted 

in Galbraith (1998) and Galbraith (2010). These are 

to do with their meaning and interpretation. On one 

level, a PD plot might just be regarded as an 

empirical smoothing of the data. If so, it is a poor one 

compared with, say, a conventional KDE where the 

kernel bandwidth is chosen according to sample size 

(among other things). But often PD plots are mis-

interpreted and lead to fallacious arguments and 

unconvincing science. 

    

I elaborate on some of these points below. This 
article is not intended to be a comprehensive critique 

of Berger (2010a) but rather a discussion of some 

statistical issues arising there and elsewhere in the 

OSL literature. 
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Transforming a probability density function 
To illustrate the incorrect transformation mentioned 

above, look at the solid line in Berger (2010a, Figure 

3). That curve is supposed to correspond, on the 

natural log scale, to an equal mixture (or sum) of four 

Gaussian probability density functions (pdfs) all with 

the same standard deviation (equal to 0.10) and 

means log(5), log(10), log(20) and log(30). If we 

transform this to the linear scale, it can be shown that 

we should get an equal mixture (or sum) of four log-

normal pdfs. You can see that the TPD curve drawn 

must be wrong because the areas under its component 
curves should be equal and they are not. 

   

When introducing his method, Berger (2010a, page 

14) wrote: ―However, application of equation 2 to 

these same artificial data generates the solid curve in 

Figure 3, accurately representing their respective 

probabilities‖. But his equation 2 does not generate 

the solid curve in his Figure 3, and that figure does 

not accurately represent their respective probabilities. 

 

Figure 1 shows the correct distribution on both log 

and linear scales. The top panel shows the pdf of Z 
(corresponding to log De), denoted by f (z), and the 

bottom panel shows the pdf of W (corresponding to 

De) denoted by g(w), where Z = log(W). The formula 

relating these two pdfs is  

 

g(w) = f ( log(w) ) / w  

 

for positive w. The factor 1/w is called the Jacobian 

of the transformation and is required in order to 

preserve the validity of probability statements, which 

are related to areas under the curve. That is, the 
probability that W lies between a and b must equal 

the probability that log(W) lies between log(a) and 

log(b) for any a and b. Different transformations have 

different Jacobians. 

 

The bottom panel of Figure 1 also shows the pdf of a 

mixture of normal (rather than log-normal) pdfs as a 

red dotted line. The dashed curve in Berger (2010a, 

Figure 3) should be the same as this. The red dotted 

curve can hardly be seen as it differs only very 

slightly from g(w). This reflects the fact that if a log-

normal distribution has a small dispersion then it is 
very hard to distinguish it from a normal distribution 

with the same mean and standard deviation. In the 

present case, each component has a coefficient of 

variation of 10%, which is small enough to make the 

normal and log-normal distributions practically the 

same. If the coefficients of variation were larger then 

the two curves would differ more. 

    

     

                                     

Figure 1: Upper panel: the pdf f (z) of an equal 
mixture of four Gaussian pdfs, each with standard 

deviation 0.10 and means log(5), log(10), log(20) 

and log(30). Lower panel: the solid curve shows the 

pdf g(w) of the mixture of log-normal distributions 

obtained by the transformation w = exp(z) so that z = 

log(w). The dotted red curve shows an equal mixture 

of Gaussian pdfs with means 5, 10, 20 and 30, and 

standard deviations 0.5, 1, 2 and 3, respectively. The 

w axis corresponds to the scale of De and z 

corresponds to log(De). 

 

     
This discussion has nothing to do with the merits of 

PD plots as such, but it is instructive for 

understanding both log transformations and 

probability density functions. 

 

What is Berger's TPD plot? 

Berger (2010b) confirmed that in drawing his TPD 

plot on the De scale the Jacobian factor was omitted, 

so that the graph ―does not manifest relative 

probabilities‖ and he suggested that it shows ―rather 

something more akin to relative ‗weighted‘ 
frequencies‖. What is it really a plot of, and is it 

useful? 

   

Imagine a positive random variable W having a 

probability density function g(w) describing relative 

frequencies in a population. Consider plotting a graph 

of wg(w) against w. The total area under this curve 

would equal the mean, or expectation, of W; and the 

area under it between two values a and b would 
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represent the ‗contribution‘ to the overall mean from 
values of w in that range. However, it is hard to see 

what practical use this concept might have. In 

particular, modes or peaks of wg(w) will not coincide 

with those of g(w). 

    

Now consider a TPD curve as plotted in Berger 

(2010a, Figures 3, 4, 6, 8 or 10). Those figures do not 

have numerical scales on their vertical axes, but it 

can be shown that the TPD curve is effectively a plot 

of wg(w) against w, where g(w) is an equal mixture 

(or sum) of n log-normal pdfs, where n is the number 
of grains or aliquots in the sample. The ith log-

normal pdf in this mixture has mean yi exp(½ ri
2), 

where yi is the observed De value for the ith grain and 

ri is its relative standard error. The factor multiplying 

yi here is slightly greater than 1 and greater for larger 

ri. Thus the total area under the TPD curve is the 

average (or sum) of these means, so is a quantity a bit 

greater than the un-weighted sample mean (or sum) 

of observed De values. The TPD curve itself would 

therefore indicate some sort of relative contributions 

to this quantity from different doses represented in 

the sample data. The qualification ―some sort of‖ is 
referring to the rather arbitrary role of the relative 

standard errors of De used in constructing the curve 

and hence in defining its meaning. 

   

It is clear from this that Berger‘s TPD plot has no 

clear-cut interpretation as a frequency distribution of 

OSL equivalent doses. 

 

Log transformations (or not) in radial plots 

A strange idea appears to have arisen that a radial 

plot must necessarily use a log transformation of De 
and therefore can't be used to represent data 

containing zero or negative De values. Of course it is 

just as easy to make a radial plot using actual De 

values and their (absolute) standard errors as it is 

with log De values and relative standard errors.  

Examples of the former can be seen in Arnold et al. 

(2009) and Galbraith (2010). 

    

Not only is it possible, it is also sometimes more 

appropriate to use a linear De scale. For example, 

when De values are close to zero their relative 

standard errors may happen to be large simply 
because they are relative to something small, and 

they may appear to be uninformative on a radial plot 

that is drawn with respect to relative standard errors, 

but properly informative when drawn with respect to 

absolute standard errors. Furthermore, in such cases 

there may be no clear relationship between De values 

and their standard errors, suggesting that the main 

sources of error are additive, rather than 

multiplicative (e.g. Arnold at al., 2009) and hence 

that comparisons on the linear De scale are more 
straightforward. 

    

For a radial plot, the choice between using a log or 

linear De scale is partly related to whether points are 

better compared using relative or absolute standard 

errors. Another transformation, mentioned in 

Galbraith (2010), is the modified log transformation z 

= log(w+a) for some suitably chosen a. This can be 

useful to plot data having some large and some zero 

or negative values. If a is small, the transformation is 

similar to a log transformation, while if a is large it is 
more like a linear transformation, so you can think of 

the value of a as making a compromise between these 

two extremes. 

 

Why are radial plots more informative? 

Radial plots are more informative because they 

exploit the information in the precisions. 

    

In his Figures 1 and 2 and corresponding text, Berger 

(2010a) cited a radial plot and ―weighted histogram‖ 

(PD plot) from Galbraith (1988). These used some 

artificial data from a discrete two component mixture 

with component means +0.5 and 0.5. He found it 
―inexplicable‖ that I then wrote: ―The weighted 

histogram is superficially attractive and suggests a 

bimodal distribution but does not point to the true 

mixture as informatively as the radial plot does‖. 

 

Here is an explanation. The radial plot (reproduced as 

Figure 2 here) shows that the data are completely 

explained by a discrete two-component mixture — 

i.e. just two distinct values, roughly equal to +0.5 and 

0.5. This is because you can easily imagine two 

radii going to +0.5 and 0.5 and, by referring to the 
±2 scale on the vertical axis, see that all of the 

variation about them can be explained by the 

observation errors. This happens to be the model that 

was used to generate the data, but even if we did not 
know this, it is clear that the data are consistent with 

it. 

  

Of course, it would be easier to see this by explicitly 

drawing the two radii with a ±2 shaded band about 

each.  Each point would fall in, or very close to, one 

or other band.  Furthermore their scatter looks like a 

superposition of homoscedastic random scatter    

about each line. You can confirm this by drawing 

your own lines and bands. I did not do this in my 

paper in order to avoid imposing any specific model 
and to allow the reader the freedom to consider 

possible mechanisms that might have produced these 

data. 
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Figure 2: A radial plot of artificial data from a 

discrete two component mixture with means +0.5 and 

0.5.This is a copy of Figure 2 from Galbraith 
(1988). 

 

No such inferences can be made from the PD plot 

(Galbraith 1988, Figure 9a or Berger 2010a, Figure 

2). Although the curve has two modes at about +0.5 

and 0.5, it does not tell us either that more than one 
component is needed to explain the data, or that two 
is enough. The radial plot tells us both of these 

things. Furthermore there is no simple relation 

between the number of components in a mixture 

distribution and the number of modes its pdf has. For 

example, it is easy to construct a two component    

mixture of normal pdfs that is unimodal, and whose 

mode differs from both component means.  Looking 

at the modes of a PD plot is even more ambiguous 

because it is not actually estimating the true dose 

distribution. 

    

In Galbraith (1988, Figure 3) and Berger (2010a, 
Figure 1) the radial plot is re-drawn with different 

plotting symbols to show explicitly which 

observations came from each component. You can 

see there that most of the low-precision values are 

consistent with both radii and that many fall closer to 

the wrong radius (the component that they do not 

belong to) than to the right one. This reflects 

uncertainty associated with the observation errors 

that is inherent in the original data, and that cannot be 

resolved however you plot them. 

 
That figure is instructive for another reason.  Suppose 

that we wanted to estimate the lowest population 

component mean value. A method that may naturally 

spring to mind is to select a subset of points that we 

think belong to this component and calculate a mean 

or weighted mean of these. You can see from the 

figure that however the subset of points is selected it 
will always contain some from the higher component 

or omit some from the lower one. I comment further 

on this below. 

 

I would encourage those interested to read the whole 

of that section in my original 1988 paper. That paper 

also explains the close connection between radial 

plots and least squares regression though the origin, 

which helps both with understanding and using radial 

plots. 

 

Empirical distributions and kernel density 

estimates 

Berger (2010a) rightly pointed out that more 

information is shown by adding a cumulative plot of 

ranked data with standard error bars. The individual 

points show the cumulative empirical distribution of 

the observed De values, and the one-sigma error bars 

display their standard errors. But a PD plot 

superimposed on it combines these incorrectly. It 

would make more sense to draw a conventional 

kernel density estimate (KDE), or a histogram, in 

order to see the shape of the distribution of observed 
De values. 

    

The upper panel of Figure 3 shows the ranked 

observations with one-sigma error bars along with a 

Gaussian KDE for the data that I used in Galbraith 

(2010). Here I have chosen the kernel bandwidth to 

correspond to the bin width in my histogram 

(Galbraith 2010, Figure 1). The histogram there and 

KDE here both show the smoothed data to essentially 

the same degree of resolution. They emphasise 

slightly different aspects. The KDE shows more 
detail of the shape of the empirical distribution while 

the histogram shows numbers of grains and areas 

under the curve more clearly. The standard errors are 

displayed in Figure 3, but they are not used in the 

construction of the KDE. 

 

What bandwidth should one use for a KDE? As with 

choosing the bin width of a histogram, there is no 

hard and fast rule. It should depend on the data and 

purpose. But there are general guidelines in the 

literature (in the R package, in particular).  Note that 

such guidelines are based on the premise that one is 
trying to see the shape of the underlying frequency 

distribution from a sample of observations measured 

without error, which is usually not the case with 

observed equivalent doses. 

 

The bandwidth of 0.058 in the upper panel of Figure 

2 is very close to the value given by the R function 

bw.ucv (unbiased cross-validation) applied to these 

data, which is 0.061. In the lower panel I have drawn 

the graph again but using the bandwidth given by the 
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Figure 3: Kernel density plots with two different 

bandwidths and empirical cumulative distributions 

for 82 single grain equivalent doses (data from Olley 

et al., 2004). The grey bars show ±1 standard error 

for each point. The red dotted curve shows a PD plot 
of these data. 

 

    

R function bw.nrd (one of several general rules of 

thumb). This is a larger bandwidth (0.141) giving a 

smoother graph. In some ways this version looks 

―nicer‖, but of course more resolution is lost. This is 

good if you think that such resolution is meaningless, 

but bad if it might be informative. Note that when    

plotting a KDE there is an implicit assumption that 

the data were sampled from a continuous distribution, 
and presumably one that is meaningful. 

    

In the lower panel of Figure 3 I have added a PD 

curve (the red dotted line). The scale is chosen so that 

the area under it is the same as that for the KDE.  

Given that it does not represent the distribution of 

either the true or observed De values, what use is it?    

In this example, it is even smoother than the KDE in 

that panel and its mode is lower (practically zero). 

Perhaps its worst feature, though, is its behaviour in 

the lower tail. We know that the true doses cannot be 

negative, so a negative observed dose gives us a 
lower bound on the absolute size of the actual error 

for that grain. For example, if we observed a De of 

0.2 Gy, then, because the true value for that grain 
cannot be negative, the estimation error must be 

negative and not less than 0.2 Gy in absolute value — 
i.e. the observed value must be (more than) 0.2 Gy 

below the true value (regardless of what the standard 

error is). Yet the PD plot still puts more area below 

even the lowest negative De. 

   

There is another distinction between a PD plot and a 

KDE (or histogram) that is worth repeating: for larger 

sample sizes one normally uses a smaller bandwidth 

for a KDE (or bin width for a histogram). But a PD 

plot does not get any better, in terms of resolution, as 

the number of grains increases. In general it gets 
worse because there are more low precision points to 

obscure the information. For example, the sample 

sizes in Berger's four examples are, respectively, 22, 

63, 56 and 179.  It could be argued that the PD plot of 

the last one, in his Figure 10, is too smooth and that a 

KDE with a smaller bandwidth would show the data 

better. 

    

Error bars and confidence intervals 

The standard error bars in Figure 3 can be regarded 

as simply displaying the size of the standard error of 

each estimate. But they could also be regarded as 
indicating confidence intervals for the true values.  In 

that case they would be approximate 68% intervals 

rather than the more conventional 95%, or two-

sigma, intervals. 

    

While this may be of some use, it is extremely hard 

to compare several confidence intervals of differing 

lengths, both visually and logically. One may be 

tempted to infer ―significant or not‖ differences from 

seeing whether intervals overlap, though of course 

that would not be correct. There is no easy way to 
interpret a number of univariate confidence intervals 

together; in principle, a multivariate confidence 

region is required. 

    

A widely recognised disadvantage of confidence 

interval plots is that the least precise estimates have 

the longest intervals and tend to dominate the space 

on the graph.  Sometimes they can be so dense that it 

is counter-productive to draw them all and it would 

be better to try to find another method of displaying 

precisions. 

    
Very often the standard errors increase with dose, 

which makes it still harder to compare them. In such 

cases it may be clearer to plot doses (and intervals) 

on a log scale. Another aspect of this is that a 

symmetric interval on the log De scale will not    

transform to a symmetric interval on the De scale.  

That is, the symmetric approximate 95% interval 

log(yi) ± 2ri for the true log dose corresponds to the 

non-symmetric interval  yi exp(±2ri) for the true dose, 

which may differ somewhat from the symmetric 
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interval yi ± 2si, where yi denotes an observed De 
value and ri and si are its relative and absolute 

standard error, respectively. If we really are regarding 

the error bars as confidence intervals, then some 

thought should perhaps be given to how they are best 

defined and displayed. For example, if the estimation 

errors were thought to be essentially multiplicative, 

then it would make more sense to construct    

symmetric confidence intervals on the log scale. 

 

Weighted means and selected data 

In his examples, Berger (2010a) suggested that 
instead of using a minimum age model, a sufficient 

estimate of the burial dose can sometimes more 

simply be obtained from a weighted average of the 

De values for a selected subset of grains; and he 

further suggested that sometimes using a weighted 

average of log(De) values is better. However, 

whatever form of average might be used, the crucial 

questions here are: (a) which subset of grains should 

be selected? and (b) what are the bias and variance of 

the resulting estimate? 

    

With respect to (a), many possibilities spring to mind. 
Among the more sensible would be methods that 

tried to select the complete group of ―youngest‖ 

grains whose observed De values were consistent 

having a common burial dose, taking into account    

estimation error and natural variation between true 

doses with the same burial history. Ideally, one hopes 

to select all of the fully bleached grains and no 

others, though this is usually not possible — see my 

earlier comments with respect to Figure 2. There will 

nearly always be partially bleached grains having 

observed De values consistent with those for well 
bleached grains. 

    

Galbraith (2010) noted that there is no good rationale 

for choosing the grains whose De values are close to 

the mode of a PD plot (i.e. choosing them because of 

this) even though that may sometimes produce an 

estimate close to the correct value. It might be more 

reliable to choose them by looking at the radial plot, 

which would at least make it easier to account for 

their differing precisions. But however you choose 

them you are bound, except in rare cases, to either 

include some partly-bleached grains or exclude some 
well-bleached ones. 

    

With respect to (b), Galbraith (2010) noted that 

selecting grains with the lowest doses and treating 

them as if they were properly representative of well-

bleached grains leads to biased estimates, sometimes 

grossly biased. For example, you can imagine that if 

you tried to be conservative and selected only the 

grains with the very lowest observed De values then 

you are likely to omit some higher values from well-

bleached grains and end up with an under-estimate of 
the burial dose. Many of the lowest observed values 

will be low because their estimation errors are 

negative, so they will be lower than the 

corresponding true values. Hence, such a subset 

would be biased towards grains whose observed De 

values are lower than the true values. 

    

Furthermore it is not correct to apply the usual 

standard error formula for an estimate obtained from 

a sub-sample that has been selected on the basis of 

the observed De values. This would not be an 
independent sample in its own right and allowance 

would need to be made for the effect of the selection.  

Calculation of a valid standard error is difficult for an 

objectively selected sample and impossible for a 

subjectively selected one. 

    

Berger (2010a) rightly noted that such estimates are 

less reliable than those based on the more formal 

minimum age models. The latter treat the problem as 

one of extracting a specific component from a 

mixture. As such, they do not attempt to select a 

subset of grains at all, but rather they assign to each 
grain a probability of belonging to the well-bleached 

component. 

    

On the subject of weighted averages and combining 

data generally, I recommend the encyclopedia entry 

by Cox (1982). This is a lucid and insightful article 

from a high authority. 

 

A note on Sircombe and Hazelton (2004) 

An interesting paper by Sircombe and Hazelton 

(2004), cited by Berger (2010a), adds some further 
theoretical insight to the question of estimating a 

frequency distribution from observations measured 

with error. It is concerned with detrital zircon ages 

obtained by U-Pb dating. It considers data yi 

generated by the equation  

 

yi = xi + ei      

                                                                                                             

where xi is sampled from a distribution with pdf  f (x) 

and ei is randomly drawn from a normal distribution 

with mean 0 and known standard deviation si. Like 

Galbraith (2010), it discusses how difficult it is to 
estimate f (x). It then considers two samples of data 

and proposes a way of measuring the dis-similarity of 

their two different f(x)s without explicitly estimating 

either of them. Interested readers might like to look at 

its Figures 1 and 3. The former shows two different 

true f(x)s that have the same observed distribution 

(when errors are added to the xis) and the latter shows 

how their method can nevertheless distinguish 

between them. Particularly illuminating is the way 



Ancient TL Vol. 29 No.1 2011                                                                                                                                                                              47 

the standard deviations si are used; this is very 
different from how they are used in a PD plot. 

     

In addition, Figure 5 of that paper shows ten detrital 

zircon age distribution plots obtained by ―summing 

individual Gaussian distributions‖ which, as far as I 

can see, are what we are calling PD plots. They are 

presented simply to show the ten samples together in 

a small space so that they can be plotted against 

measures of dis-similarity between pairs of their 

underlying f(x)s. No inferences about f(x) are made 

from these plots — indeed the authors explicitly say 
they are displaying the estimation errors as well as 

the age variation. That figure is undoubtedly 

informative, mainly because the estimation errors are 

small (in some cases very small) compared with 

differences between the single grain ages. These PD 

plots are very different from those normally 

encountered with OSL De data. Nevertheless, the 

error variation, though mostly relatively small, is still 

confounded with the age variation. 

 

Summary 

Frequency distributions of OSL equivalent doses are 
hard to understand, even when De is measured 

accurately, because they will reflect sampling, 

experimental and observational effects in addition to 

the key features of scientific interest. Histograms     

and kernel density estimates of De values are hard to 

interpret. 

     

The ―alternate form of probability-distribution plot‖ 

proposed by Berger (2010a) does not represent a 

proper probability distribution because of an 

incorrect transformation from the log scale. If it were 
plotted on a log scale it would be a PD plot in the 

sense of Galbraith (2010) — but using log(De) values 

and relative standard errors, rather than De values and 

absolute standard errors, as is implied in the abstract 

of Berger (2010a). If it were correctly transformed to 

the linear De scale it would often not differ greatly 

from a PD plot directly constructed on that scale. 

Berger‘s interpretations of his TPD graphs are based 

on a misunderstanding of what he plotted and his 

conclusion that they can ―reveal meaningful relative 

structure in De distributions‖ (Berger 2010a, p.19) is 

not justified. 
 

Galbraith (1988) and Galbraith (2010) discussed PD 

plots in the context of fission track ages and OSL 

equivalent doses, respectively. Such plots do not have 

a sound statistical basis and they have often been 

mis-interpreted in the literature. Berger (2010a) noted 

that PD plots have been criticised but did not 

recognise the substantive criticisms in those papers. 

PD plots have sometimes been used as an aid to 

selecting subsets of grains from which a weighted 

mean dose is calculated. This is not a reliable practice 
for the reasons given above. 
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Introduction 

Rex Galbraith and I exchanged many e-mails in 2010 

concerning my note on so-called TPD plots (Berger, 

2010a).  As a result I submitted an Erratum (Berger, 

2010b) which I think clarifies Berger's note 
succinctly. That e-mail exchange, as does his recent 

Comment (Galbraith, 2011), draws out an essential 

'philosophical' difference. Perhaps the best way to 

summarize this difference is to say that I am 

concerned with "empirical distributions" and how to 

use visual representations of single-grain paleodose 

(De) estimates as accessible guides to choices of 

usefully accurate calculations of 'mean' De values, 

whereas he is describing the same 'elephant' from a 

statistically idealistic viewpoint. Clues to this 

idealism are provided by the frequent use in 

Galbraith (2011) of ill-defined (with respect to 
single-grain De data) words such as: 'true', 'useful', 

'less informative', 'more informative', 'less meaning', 

'less convincing', 'resolved', 'actual', etc. In the 

context, these words misrepresent the pragmatic 

message of Berger (2010a, 2010b). While I 

appreciate his current note as an attempt to educate 

the reader on the theoretical nuances of the statistical 

handling of single-grain De distributions and their 

embedded uncertainty estimates, and calculations of 

weighted means, for some of the reasons outlines 

above, the Comment (Galbraith, 2011) compels some 
reply herein. 

 

One of the outcomes of our e-mail exchange was my 

request that he provide to the community of OSL 

users a software or spreadsheet 'program' for the 

ready computation of KDE plots such as shown in 

Figure 3 of Galbraith (2011). Presumably such plots 

can be generated (with effort by a novice) from the R 

statistical package, but most of us don't use that 

package routinely (I employ it for Arnold's unlogged 

MAM code: Arnold and Roberts, 2009), if at all.  

Another request was for dissemination of a software 
package for generating reasonably high-resolution 

radial plots (e.g., pdf files, rather than clipboard 

copies) via a user-friendly interface (GUI) that 

handles both linear and log De scales. He has not 

supplied that to me. In this context, the Comment of 

Galbraith (2011) could have been more helpful. The 

radial-plot software available from John Olley has an 

excellent GUI but it does not permit use of linear De 
scales, and creates only clipboard images of the plots.  

The radial-plot software from Vermeesch (2009) 

does permit creating high-resolution plots (saved as 

pdf files) and use of linear scales, but lacks many 

desirable user-selectable options (e.g. choosing 

centers of ±2σ bands and band fills) that the Olley 

package offers. 

 

In addition to these general comments, I have some 

comments to make on specific sections of Galbraith 

(2011), under his topic headings. 
 

Introduction 

Here he states that Berger (2010a) "does not 

recognize the more fundamental problems noted in 

Galbraith (1998) and Galbraith (2010)". This is 

incorrect and misrepresentative. Berger (2010a) did 

not attempt a fundamental discussion of the 

underlying principles expounded in these citations.  

How can that lacuna then demonstrate a lack of 

recognition?  

 

Transforming a probability density function 
The Erratum (Berger, 2010b) makes it clear that the 

areas under the peaks of the TPD plot cannot be used 

as indicators of relative probability, thus much of this 

section of Galbraith (2011) is redundant. 

 

What is Berger's TPD plot? 

There appears to be a logical inconsistency, in that 

(implied in Galbraith, 2011) it is permissible to adjust 

bin-widths to construct histograms of data points 

('univariate estimates', if you will) lacking equal 

uncertainties, but it is not permissible to create a 
visual plot (TPD) free of such forced 'bandwidth' 

choices (unless once thinks the choice of a Gaussian 

is 'arbitrary'). It is misleading to state (Galbraith, 

2011) that "the role of the relative standard errors of 

De" is "arbitrary". Also, what does Galbraith (2011) 

mean by "clear-cut interpretation" in the statement 

that the "TPD plot has no clear-cut interpretation"? 

Does he mean 'statistically idealistic', or 'empirically 

pragmatic'? 

 

Log transformations (or not) in radial plots 

This section is unnecessary because Berger (2010b) 
clarified that issue, concisely. 

 

Why are radial plots more informative? 

Berger (2010a) gave examples (and the literature has 

many more) where a radial plot is essential, but 

Galbraith (2011) repeatedly uses idealistic words 

such as "completely explained", or "more 

informative" to imply that other plots are useless.  

Also, the word "enough" in the phrase "or that two is 

enough" in paragraph 4 or 5 (depending on what is 
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counted as a paragraph) has a different meaning for a 
pragmatic geochronologist than for an idealistic 

statistician. In Figure 9a of Galbraith (1988) (which 

the reader should read) and Figure 2 of Berger 

(2010a), I continue to see that the PD plot illustrates 

the presence of two modes and that this (existence of 

two modes) is the most parsimonious view of that 

data distribution. Of course, in a real data set one can 

easily violate Occam's razor and conceive of many 

embedded components, but what would be the 

(geological) meaning of that? In the next paragraph, 

Galbraith (2011) makes remarks about overlapping 
data points that apply equally to a PD plot (if one 

plots the data points and uncertainties with this plot). 

 

Empirical distributions and kernel density estimates 

The word "incorrectly" is a statistical usage, whereas 

in dating practice, these nuances in Galbraith (2011) 

are likely to be largely of a secondary or tertiary 

concern, because one often is (or should be) 

comparing OSL age estimates with numerical or 

stratigraphic age estimates obtained from other 

methods.  Again, it would have been more helpful if 

user-friendly code or standalone software were 
provided for generating such KDE plots (with all 

their subjectivity). The rest of this section seems to 

imply that with real data within single-grain De 

distributions (rather than with statistically idealistic 

data points) every bump and wiggle should be 

resolved or would be informative (informative of 

what?). In dating practice, as stated implicitly (if not 

explicitly) by Berger (2010a), many single-grain De 

data points obtained from non-eolian deposits have 

no geological meaning. Generally, if non-eolian (not 

uniformly bleached optically) samples are collected 
carefully (this topic is addressed below), only the 

lowest De values would have meaning (last daylight 

exposure), unless there are stratigraphic indicators 

that a specific multi-depositional history could be 

preserved, or in carbonate-bearing deposits, evidence 

of significant β micro-dosimetry. An example would 

be provided by buried soil horizons, in which case 

the lowest De values might not relate to the main 

depositional process or event. 

 

In other words, in the Figure 3 of Galbraith (2011) 

and in many published examples of single-grain De 
distributions, it is not important to 'resolve' (whatever 

that word might mean to readers) minor clusters of 

De values above the lowest 'age' group. Of course, 

deviations caused by unrecognized or uncorrectable 

effects of β micro-dosimetry fold into interpretations 

in some cases. Further folded into the generation of 

'under-estimates' of 'true' single-grain De values are 

the effects of careless sample collection when 

deposits are heterogeneous. For example, as stated 

(Berger, 2010a), the use of brute-force tube or pipe 

sampling may introduce (no one has investigated this 
effect, to my knowledge) 'too-young' grains (from the 

sediment face) into the interior of the sample. There 

are published examples (e.g. supporting online 

material of Jacobs et al., 2008) of single-grain De 

distributions where the authors are motivated (by 

stratigraphic or archaeological evidence) to employ a 

central-age or finite-mixture model and to dismiss 

widely discordant 'too-young' De data points that may 

be artifacts largely of the sample collection method. 

 

Error bars and confidence intervals 
It is not "extremely hard" for me (and presumably 

most practicing geochronologists) "to compare 

several confidence intervals of differing lengths, both 

visually and logically". Also, why is it "counter-

productive" to draw confidence intervals?  Counter-

productive to what? ...to prediction of certain 

statistical parameters, or to age estimation from 

empirical data? 

 

Weighted means and selected data 

There are several points of disagreement, and I think 

that merely citing a few standard books (e.g. 
Bevington and Robinson, 1982; Moroney, 1965; 

Topping, 1962) on treatment of uncertainties would 

have sufficed. However, I fail to understand parts of 

the fourth paragraph. For example, in a geological 

sense, how can there be "some higher values from 

well-bleached grains" (apart from Gaussian or other 

probability effects) if these values indeed have been 

well-bleached and share the same β micro-dosimetry, 

unless one considers such and other physical effects, 

which Galbraith (2011) does not mention?  Also, 

negative De values more than one (estimated) 
standard deviation below zero are possible if one 

accepts Gaussian probability in the measurement of 

De values close to (and above) zero. Much of that 

paragraph's argument is hypothetical conjecture: 

statistical idealism disconnected from empirical 

settings. 

 

Summary 

I disagree with the final sentence in Galbraith (2011): 

"This" selection of subsets of data points "is not a 

reliable practice...".  Galbraith's definition of 'reliable' 

apparently is not mine. There are several examples in 
the single-grain OSL dating literature where selection 

of subsets provides usefully accurate (geologically, 

stratigraphically) age estimates. Of course, there are 

several examples in such literature where selection of 

subsets by use of visualization plots is too subjective 

(see some examples in Berger, 2010a) to be useful, 

and one must resort to more refined statistical 

calculation schemes (e.g., minimum-age, central-age 

models, Galbraith et al., 1999) than use of weighted 

means. 
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Message from the Editor 
Following the long discourse that has ensued in the 

last two issues of Ancient TL, the Editorial Board has 

decided to clarify the maximum length of Letters and 

Replies. The purpose of this is not to stifle 

discussion, but rather to ensure that readers are able 

to clearly follow the line of argument arising from the 

original article. In the future, Letters to Ancient TL 

will be limited to a maximum of two printed pages, 

including diagrams, tables and references (equivalent 

to about 1400 words of text). Replies will have the 

same limit. 
 

G.A.T. Duller 


