- Supplementary Data Introducing an R package for luminescence dating analysis Ancient TL

Sebastian Kreutzer ${ }^{1,2, *}$, Christoph Schmidt ${ }^{3}$, Margret C. Fuchs ${ }^{4}$, Michael Dietze ${ }^{5}$, Manfred Fischer ${ }^{2}$, Markus Fuchs ${ }^{1}$
${ }^{1}$ Department of Geography, Justus-Liebig-University Giessen, 35390 Giessen, Germany
${ }^{2}$ Geographical Institute, Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany
${ }^{3}$ Institute for Geography, University of Cologne, 50923 Cologne, Germany
${ }^{4}$ Department of Geology, TU Bergakademie Freiberg, 09599 Freiberg, Germany
${ }^{5}$ Institute of Geography, TU Dresden, 01069 Dresden, Germany

*corresponding author: sebastian.kreutzer@geogr.uni-giessen.de
June 8, 2012

Contents

1 Example: Fitting loop 5
2 Fitting comparison 7
References 12

List of Figures

1 Fitting comparison I 8
2 Fitting comparison II 9
3 Fitting comparison III 10

List of Tables

1 Samples used for the fitting test 10
2 Results fitting 11

1 Example: Fitting loop

This \mathbf{R} script uses the Luminescence package and selects all ramped signal data from a BIN-file. It is assumed that every 2nd curve is a background curve. A 3-component fit is tried for every curve after background subtraction. For every fit a plot is produced. The output is written in the previously defined output folder. The numerical values of the parameter output are written in a CSV-file. Additional values are appended.

```
##fit loop for LM-OSL curve data
##INSERT INPUT AND OUTPUT PATH HERE
input<-"~/Desktop/LM_ CurveMeasurement.BIN"
output.path<-"~ /Desktop/"
n. components<-3
##load library
library(Luminescence)
## |#
## READ AND PREPARE DATA
## ####
##read BIN file
temp<-readBIN2R(input)
##grep IDs for signal and background curves
values.ID<-temp@METADATA[temp@METADATA[, "LTYPE"]=="RBR", "ID "]
values.HIGH<-temp@METADATA[temp@METADATA[ , "LTYPE"]=="RBR" ,"HIGH" ]
    ##set IDs for curves
    values.signal.ID<-values.ID [seq(1, length(values.ID ), 2)]
    values.BG.ID<-values.ID [seq(2, length(values.ID ), 2)]
    #set stimulation time for curves
    values.signal.HIGH<-values.HIGH[seq(1, length(values.HIGH), 2)]
    values.BG.HIGHK-values.HIGH[seq(2, length(values.HIGH),2 )]
### |##
## FIT LOOP
## [##
for(i in 1:(length(values.ID)/2)){
    ##set individual data.frame for signal and BG
    ##assuming that signal and bg have the same resolution and stimulation time
        x<-seq(values.signal.HIGH[i]/length(unlist(temp@DATA[values.signal.ID[i]])),
                values.signal.HIGH[i],
            values.signal.HIGH[i]/length(unlist(temp@DATA[values.signal.ID[i]])))
        ##set data.frame
        values.signal<-data.frame(x=x,y=unlist(temp@DATA[values.signal.ID [i]]))
```


\#\#
\#\#START FITTING WITH JPEG OUTPUT
jpeg (file=paste (output. path, "FittedCurves_", i, ".jpg", sep=" "), quality=100,
height $=3000$, width $=3000$, res $=300$)
fit_LMCurve(values.signal, values.BG,
log_scale="x",
n. components=n. components,
fit. advanced $=$ TRUE,
output.path=output.path,
main=paste("sample $"$, i, sep $=" "))$
dev.off()
\#\#
\}\#EOF

2 Fitting comparison

To provide a comparison of different approaches to fit models to luminescence curves the routine of the Luminescence package is compared with those of the programs Fitbin9 (Bailey, 2008) and Hybfit (Grzegorz Adamiec, principle described in Bluszcz and Adamiec (2006)) (Tab. 1). Without applying any background subtraction the curves almost coincide (indistinguishable curve shapes). The results as a sum curve for a $2-, 3-$ and 4 -component function are shown in Fig. 1. In addition, for 7 -components the result for sample Rom16 is shown in Fig. 3 using \mathbf{R} and the program Hybfit. In Fig. 2 the outcome seems to be affected by the way the background is subtracted (linear or polynomial fit) and therefore differences between the programs can be noticed. However, as far as the BG is fitted in the course of one of the slow components, the outcomes of the three programs appear to be very comparable. The detailed results (n - and b-values) are listed in Tab. 2. All fits were produced using the automatic start parameter estimation functions of the programs. Note: Not all possible combinations of components, samples and programs were applied.
Sum Curves without Background Subtraction

n.components $=4$

n.components $=3$

006」日
L7OW

n.components $=2$

Figure 1: LM-OSL fitting results as sum curves using three different programs for three different samples without background subtraction.

Figure 2: LM-OSL fitting results as sum curves using three different programs for three different samples with background subtraction. Not for all combinations a fit was applied.

Figure 3: LM-OSL fitting result comparing R and the program Hybfit for sample Rom16 using a 7 -component function.

Table 1: Samples used for the fitting test

sample id	description	grain size	laboratory	reference
BT900	beach deposit Norway (quartz)	$90-250 \mu \mathrm{~m}$	Bayreuth	Fuchs et al. (2011)
MOL1	Mol sand Belgium (quartz)	$90-200 \mu \mathrm{~m}$	Bayreuth	Gullentops and Vandenberghe (1995)
Rom16	archaeological artefact Romania (chalcedony)	$100-200 \mu \mathrm{~m}$	Cologne	Schmidt et al. (prep)

Table 2: Results fitting

\#	program	sample	BG^{1}	n^{2}	n1	b1	n2	b2	n3	b3	n4	b4	n5	b5	n6	b6	n7	b7
1	FitBin9	BT900	F	3	$1.88 \mathrm{E}+04$	$1.28 \mathrm{E}+00$	$8.76 \mathrm{E}+05$	$1.91 \mathrm{E}-03$	$8.19 \mathrm{E}+06$	$6.55 \mathrm{E}-05$	NV							
2	Hybfit	BT900	F	3	$1.86 \mathrm{E}+04$	$1.28 \mathrm{E}+00$	$7.70 \mathrm{E}+05$	$2.09 \mathrm{E}-03$	$4.52 \mathrm{E}+06$	1.40E-04	NV							
3	R	BT900	F	3	$1.88 \mathrm{E}+04$	$1.27 \mathrm{E}+00$	$8.78 \mathrm{E}+05$	$1.90 \mathrm{E}-03$	8.30E+06	$6.44 \mathrm{E}-05$	NV							
4	FitBin9	BT900	T	4	$1.44 \mathrm{E}+04$	$1.72 \mathrm{E}+00$	$1.05 \mathrm{E}+04$	$1.09 \mathrm{E}-01$	$9.54 \mathrm{E}+05$	$1.75 \mathrm{E}-03$	$1.49 \mathrm{E}+09$	3.09E-08	NV	NV	NV	NV	NV	NV
5	R	BT900	T	4	$1.27 \mathrm{E}+04$	$1.78 \mathrm{E}+00$	$4.26 \mathrm{E}+03$	$2.59 \mathrm{E}-01$	$5.54 \mathrm{E}+03$	$4.43 \mathrm{E}-02$	$1.06 \mathrm{E}+06$	$1.58 \mathrm{E}-03$	NV	NV	NV	NV	NV	NV
6	FitBin9	MOL1	F	2	$9.05 \mathrm{E}+04$	$2.19 \mathrm{E}+00$	$1.00 \mathrm{E}+06$	$7.46 \mathrm{E}-04$	NV									
7	FitBin9	MOL1	T	2	$9.05 \mathrm{E}+04$	$2.19 \mathrm{E}+00$	$1.00 \mathrm{E}+06$	$7.46 \mathrm{E}-04$	NV									
8	R	MOL1	F	2	$9.07 \mathrm{E}+04$	$2.17 \mathrm{E}+00$	$1.00 \mathrm{E}+06$	$7.46 \mathrm{E}-04$	NV									
9	R	MOL1	T	2	$8.63 \mathrm{E}+04$	$2.23 \mathrm{E}+00$	$4.94 \mathrm{E}+05$	$1.08 \mathrm{E}-03$	NV									
10	FitBin9	MOL1	F	3	$8.95 \mathrm{E}+04$	$2.23 \mathrm{E}+00$	$5.60 \mathrm{E}+04$	$1.12 \mathrm{E}-02$	$1.03 \mathrm{E}+06$	$6.33 \mathrm{E}-04$	NV							
11	FitBin9	MOL1	T	3	$8.95 \mathrm{E}+04$	$2.23 \mathrm{E}+00$	$5.60 \mathrm{E}+04$	$1.12 \mathrm{E}-02$	$1.03 \mathrm{E}+06$	$6.33 \mathrm{E}-04$	NV							
12	R	MOL1	F	3	$8.97 \mathrm{E}+04$	$2.20 \mathrm{E}+00$	$5.60 \mathrm{E}+04$	$1.12 \mathrm{E}-02$	$1.03 \mathrm{E}+06$	$6.33 \mathrm{E}-04$	NV							
13	R	MOL1	T	3	$8.60 \mathrm{E}+04$	$2.24 \mathrm{E}+00$	$1.55 \mathrm{E}+04$	$1.46 \mathrm{E}-02$	$4.92 \mathrm{E}+05$	$1.02 \mathrm{E}-03$	NV							
14	FitBin9	MOL1	F	4	$8.87 \mathrm{E}+04$	$2.25 \mathrm{E}+00$	$1.99 \mathrm{E}+04$	$4.37 \mathrm{E}-02$	$9.48 \mathrm{E}+04$	$3.62 \mathrm{E}-03$	$1.06 \mathrm{E}+06$	$5.24 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
15	Hybfit	MOL1	F	4	$8.52 \mathrm{E}+04$	$2.18 \mathrm{E}+00$	$1.54 \mathrm{E}+04$	$6.40 \mathrm{E}-02$	$7.78 \mathrm{E}+04$	$4.76 \mathrm{E}-03$	$1.05 \mathrm{E}+06$	$5.56 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
16	R	MOL1	F	4	$8.89 \mathrm{E}+04$	$2.23 \mathrm{E}+00$	$2.02 \mathrm{E}+04$	$4.23 \mathrm{E}-02$	$9.66 \mathrm{E}+04$	$3.54 \mathrm{E}-03$	$1.06 \mathrm{E}+06$	$5.21 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
17	FitBin9	Rom16	F	2	$1.18 \mathrm{E}+05$	$6.14 \mathrm{E}-02$	$4.36 \mathrm{E}+05$	$7.59 \mathrm{E}-04$	NV									
18	FitBin9	Rom16	T	2	$1.18 \mathrm{E}+05$	6.14E-02	$4.36 \mathrm{E}+05$	$7.59 \mathrm{E}-04$	NV									
19	Hybfit	Rom16	F	2	$1.23 \mathrm{E}+05$	$5.60 \mathrm{E}-02$	$4.36 \mathrm{E}+05$	$7.38 \mathrm{E}-04$	NV									
20	Hybfit	Rom16	T	2	$8.06 \mathrm{E}+04$	$1.00 \mathrm{E}-01$	$7.20 \mathrm{E}+04$	$1.48 \mathrm{E}-02$	NV									
21	R	Rom16	F	2	$1.19 \mathrm{E}+05$	$6.12 \mathrm{E}-02$	$4.36 \mathrm{E}+05$	$7.59 \mathrm{E}-04$	NV									
22	R	Rom16	T	2	$1.04 \mathrm{E}+05$	$6.61 \mathrm{E}-02$	$1.54 \mathrm{E}+05$	$1.59 \mathrm{E}-03$	NV									
23	FitBin9	Rom16	F	,	$7.25 \mathrm{E}+04$	$1.08 \mathrm{E}-01$	$7.66 \mathrm{E}+04$	$1.74 \mathrm{E}-02$	$4.74 \mathrm{E}+05$	$5.69 \mathrm{E}-04$	NV							
24	Hybfit	Rom16	F		$8.06 \mathrm{E}+04$	$1.00 \mathrm{E}-01$	$7.20 \mathrm{E}+04$	$1.48 \mathrm{E}-02$	$4.76 \mathrm{E}+05$	$5.49 \mathrm{E}-04$	NV							
25	R	Rom16	F	3	$7.29 \mathrm{E}+04$	$1.07 \mathrm{E}-01$	$7.64 \mathrm{E}+04$	$1.72 \mathrm{E}-02$	$4.74 \mathrm{E}+05$	$5.68 \mathrm{E}-04$	NV							
26	R	Rom16	T	3	$5.89 \mathrm{E}+04$	$1.15 \mathrm{E}-01$	$6.55 \mathrm{E}+04$	$2.48 \mathrm{E}-02$	$1.49 \mathrm{E}+05$	$1.21 \mathrm{E}-03$	NV							
27	FitBin9	Rom16	F	4	$1.92 \mathrm{E}+04$	$2.84 \mathrm{E}-01$	$8.78 \mathrm{E}+04$	$5.78 \mathrm{E}-02$	$6.25 \mathrm{E}+04$	$7.26 \mathrm{E}-03$	$5.18 \mathrm{E}+05$	$4.43 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
28	Hybfit	Rom16	F	4	$2.83 \mathrm{E}+04$	$2.27 \mathrm{E}-01$	$8.59 \mathrm{E}+04$	$4.82 \mathrm{E}-02$	$6.26 \mathrm{E}+04$	$5.69 \mathrm{E}-03$	$5.37 \mathrm{E}+05$	$4.01 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
29	R	Rom16	F		$2.25 \mathrm{E}+04$	$2.49 \mathrm{E}-01$	$8.70 \mathrm{E}+04$	$5.42 \mathrm{E}-02$	$6.25 \mathrm{E}+04$	$6.67 \mathrm{E}-03$	$5.25 \mathrm{E}+05$	$4.29 \mathrm{E}-04$	NV	NV	NV	NV	NV	NV
30	R	Rom16	T	4	$5.07 \mathrm{E}+03$	$6.48 \mathrm{E}-01$	$7.16 \mathrm{E}+04$	$8.66 \mathrm{E}-02$	$5.25 \mathrm{E}+04$	$1.79 \mathrm{E}-02$	$1.48 \mathrm{E}+05$	$1.13 \mathrm{E}-03$	NV	NV	NV	NV	NV	NV
31	R	Rom16	F	5	$3.74 \mathrm{E}+03$	$1.68 \mathrm{E}+00$	$5.50 \mathrm{E}+04$	$1.17 \mathrm{E}-01$	$6.74 \mathrm{E}+04$	$3.11 \mathrm{E}-02$	$7.22 \mathrm{E}+04$	3.61E-03	$6.14 \mathrm{E}+05$	$3.02 \mathrm{E}-04$	NV	NV	NV	NV
32	R	Rom16	T	5	$2.89 \mathrm{E}+03$	$1.15 \mathrm{E}+00$	$5.47 \mathrm{E}+04$	$1.09 \mathrm{E}-01$	$5.82 \mathrm{E}+04$	$3.04 \mathrm{E}-02$	$5.07 \mathrm{E}+04$	3.48E-03	$1.33 \mathrm{E}+05$	$6.55 \mathrm{E}-04$	NV	NV	NV	NV
33	R	Rom16	F		$9.60 \mathrm{E}+02$	$2.06 \mathrm{E}+01$	$4.55 \mathrm{E}+03$	$9.04 \mathrm{E}-01$	$5.96 \mathrm{E}+04$	$1.06 \mathrm{E}-01$	$6.33 \mathrm{E}+04$	$2.83 \mathrm{E}-02$	7.54E+04	$3.32 \mathrm{E}-03$	$6.38 \mathrm{E}+05$	$2.80 \mathrm{E}-04$	NV	NV
34	R	Rom16	T		$5.20 \mathrm{E}+02$	$1.96 \mathrm{E}+01$	$3.34 \mathrm{E}+03$	7.82E-01	$5.67 \mathrm{E}+04$	$1.04 \mathrm{E}-01$	5.62E+04	$2.90 \mathrm{E}-02$	$5.35 \mathrm{E}+04$	$3.27 \mathrm{E}-03$	1.32E+05	$6.18 \mathrm{E}-04$	NV	NV
35	Hybfit	Rom16	F	7	$9.35 \mathrm{E}+02$	$2.02 \mathrm{E}+01$	$4.20 \mathrm{E}+03$	$9.59 \mathrm{E}-01$	$5.23 \mathrm{E}+04$	$1.14 \mathrm{E}-01$	$5.80 \mathrm{E}+04$	$3.62 \mathrm{E}-02$	$2.82 \mathrm{E}+04$	$1.02 \mathrm{E}-02$	$1.24 \mathrm{E}+05$	$1.77 \mathrm{E}-03$	$1.77 \mathrm{E}+06$	$6.37 \mathrm{E}-05$
36	R	Rom16	F	7	$9.13 \mathrm{E}+02$	$2.18 \mathrm{E}+01$	$3.60 \mathrm{E}+03$	$1.12 \mathrm{E}+00$	$3.39 \mathrm{E}+04$	$1.40 \mathrm{E}-01$	$5.17 \mathrm{E}+04$	$5.82 \mathrm{E}-02$	$4.39 \mathrm{E}+04$	$1.96 \mathrm{E}-02$	$8.80 \mathrm{E}+04$	$2.62 \mathrm{E}-03$	$7.44 \mathrm{E}+05$	$2.10 \mathrm{E}-04$
37	R	Rom16	T	7	$5.01 \mathrm{E}+02$	$2.02 \mathrm{E}+01$	$2.74 \mathrm{E}+03$	$9.15 \mathrm{E}-01$	$4.28 \mathrm{E}+04$	$1.20 \mathrm{E}-01$	$4.45 \mathrm{E}+04$	$4.71 \mathrm{E}-02$	$3.10 \mathrm{E}+04$	$1.85 \mathrm{E}-02$	$7.63 \mathrm{E}+04$	$2.31 \mathrm{E}-03$	$1.39 \mathrm{E}+05$	$3.29 \mathrm{E}-04$

Note
background subtraction T (TRUE) or F (FALSE)
2 number of components used for fitting
n is the number of initial trapped electrons
σ is the detrapping probability
$\mathrm{NV}=$ No Value

References

Bailey, D. J. E. (2008). Development of LM OSL Analysis Techniques for Applications to Optical Dating. PhD thesis, Research Laboratory for Archæology and the History of Art Keble College. unpublished.

Bluszcz, A. and Adamiec, G. (2006). Application of differential evolution to fitting OSL decay curves. Radiation Measurements, 41(7-8):886-891.

Fuchs, M., Kreutzer, S., Fischer, M., Sauer, D., and Sørensen, R. (2011). OSL and IRSL dating of raised beach sand deposits along the southeastern coast of Norway. Quaternary Geochronology, 10.1016/j.quageo.2011.11.009.

Gullentops, F. and Vandenberghe, N. (1995). Toelichtingen Bij De Geologische Kaart Van Belgie Vlaams Gewest: Kaartblad 17 Mol. Belgische Geologische Dienst.

Schmidt, C., Sitlivy, V., Anghelinu, M., Chabai, V., Kels, H., Uthmeier, T., Hauck, T., Băltean, I., Hilgers, A., Richter, J., and Radtke, U. (in prep.). Unexpectedly old: thermoluminescence dating of heated artefacts from the Aurignacian open-air site of Româneşti-Dumbrăviţa I, Romania. in preparation.

