MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers should be written in the answer books provided, including any diagrams, graphs or sketches. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Calculators are permitted, provided they are silent, self-powered, without communication facilities, and incapable of holding text or other material that could be used to give a candidate an unfair advantage. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.
- Statistical tables are not required.

Section A

1. Simplify the following expressions:
(a) $\frac{1}{1+\sqrt{3}}\left(\frac{1}{1-\frac{1}{\sqrt{3}}}-1\right)$,
(b) $\log _{6} 9+\log _{6} 4$,
(c) $\frac{x^{2}-x-2}{3 x-6}+\frac{6-x^{2}-x}{3 x+9}$.
2. Differentiate the following expressions with respect to x, simplifying your answer as far as possible:
(a) $x^{5}+\cos x$,
[3 marks]
(b) $\frac{1}{2} \ln \left(1+x^{2}\right)$,
[4 marks]
(c) $x\left(1+\tan ^{2}(5 x)\right) \cos ^{2}(5 x)$.
[3 marks]
3. Integrate the following expressions with respect to x :
(a) $e^{3 x}+5 x^{9}$,
[3 marks]
(b) $(3 x+1)^{2}+\cos x$,
[4 marks]
(c) $\frac{9}{3 x+1}$.
[3 marks]
4. (a) Write down the equation of the circle C, with centre at $(2,1)$ and which intersects the x-axis at the point $P_{1}=(2,0)$.
(b) Write down the equation of the line L which intersects C at the point P_{1}, and has gradient -2 .
(c) Find the second point P_{2} at which the line L intersects C. [5 marks]
(d) Sketch the graphs of C and L on the $x y$-plane, indicating also P_{1} and P_{2}. [5 marks]
5. (a) Find all solutions x (in radians) of the equation

$$
(2 \tan x \sin x-1) \cos x=1
$$

that also satisfy $0<x<2 \pi$.
[8 marks]
(b) Show that the equation $e^{-3 x}-\sin \left(x^{3}\right)=0$ has at least three roots in the interval $(0,2)$. (Note: you are not required to find the roots.) [7 marks]

Section B

6. Consider the function $f(x)=1 /\left(1+x^{2}\right)$.
(a) Find the derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, and find a point $x_{0}<0$ such that $f\left(x_{0}\right)=$ $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)$.
(b) Show that the curves $y=f(x)$ and $y=f^{\prime}(x)$ have the same tangent line L at x_{0}, and find the equation of L.
(c) Show that $f(x) \geq f^{\prime}(x)$ for every real number x. [3 marks]
(d) Calculate the area enclosed by the curves $y=f(x)$ and $y=f^{\prime}(x)$, and the lines $x=x_{0}$ and $x=0$. [6 marks]
7. A projectile is fired up an incline (incline angle ϕ) with an initial speed v_{0} at angle θ_{0} with respect to the horizontal $\left(\theta_{0}>\phi\right)$ as shown in the figure below.

(a) Show that the trajectory of the projectile is given by the equation

$$
y=\left(\tan \theta_{0}\right) x-\frac{g}{2} \frac{x^{2}}{v_{0}^{2} \cos ^{2} \theta_{0}}
$$

where g is the gravitational acceleration.
(b) Hence show that the projectile travels a distance d up the incline, where

$$
d=\frac{2 v_{0}^{2} \cos \theta_{0} \sin \left(\theta_{0}-\phi\right)}{g \cos ^{2} \phi}
$$

[7 marks]
(c) For what value of θ_{0} is d at its maximum, and what is the maximum value? Simplify your answer for the maximum value as far as possible. [10 marks]

You may require the following identities:

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
\sin (\alpha) \cos (\beta) & =\frac{1}{2} \sin (\alpha+\beta)+\frac{1}{2} \sin (\alpha-\beta)
\end{aligned}
$$

8. Suppose that a continuous random variable, X, has a probability density function given by

$$
f(x)= \begin{cases}k x & \text { for } 0 \leq x<1 \\ 2 k-k x & \text { for } 1 \leq x \leq 2 \\ 0 & \text { for } x<0 \text { or } x>2\end{cases}
$$

(a) Find the value of k.
(b) Draw a graph of the function $f(x)$ for $-2 \leq x \leq 4$. [2 marks]
(c) Find $\mathbb{E}(X)$ and $\operatorname{Var}(X)$.
[10 marks]
(d) If $Y=3 X+2$, find $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$.
(e) Find M such that $P(X \leq M)=0.4$.

